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We demonstrate that two spatially separated  parties (Alice and Bob) can 

utilize shared prior quantum entanglement, as well as a classical information 

channel, to  establish a synchronized pair of atomic clocks. Within their  common 

inertial  frame, Alice and Bob execute a sequence of local measurements and 

classical communiquCis, which extract the clock pair and guarantees  their 

synchrony. In  contrast to classical synchronization schemes, our protocol is 

independent of Alice  or Bob's knowledge of their relative locations  or of the 

properties of the intervening medium. 
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In the Special  Theory of Relativity, there  are two common methods for 

synchronizing a pair of spatially separated clocks, A and B,  which are  at  rest in  a 

common inertial frame. The usual procedure is  that of Einstein  Synchronization, 

which  involves an operational line-of-sight exchange of light pulses between two 

observers, say Alice and Bob,  who are co-located with the clocks A and B, 

respectively [l]. A less commonly  used Clock Synchronization Protocol (CSP) is 

that of Eddington, namely, Slow Clock Transport  (SCT). In the SCT scheme, the 

two clocks A and B are first synchronized locally and then they are  transported 

adiabatically (infinitesimally slowly) to their final separated locations in  the 

common inertial frame [a].  These two rather different  protocols  lead to the same 

physical  consequences, under certain conventionality assumptions of the isotropy 

of the one-way  speed of light [3]. In our current work we  would like to propose a 

third CSP,  which utilizes quantum informatics techniques that exploit the 

resource of shared prior entanglement between the two synchronizing parties. 

Our  proposed  method of Quantum  Atomic Clock Synchronization  (QuACS) 

has many elements in common with Ekert’s, entanglement-enabled, quantum 

key-distribution [4]. In the Ekert scheme,  Alice and Bob initially share only prior- 

entangled qubit pairs, and the key  does  not  yet exist. The key is  then extracted 

from the ensemble of entangled pairs through a series of measurements and 

classical communiques. In other words, no  key is ever  physically transported 

between  Alice and Bob, which  is the basis for the security of this distribution 

system. Likewise,  for our QuACS protocol, there initially exist no clocks,  but 

rather only shared entanglement. The synchronized clocks are extracted from the 

prior entanglement via the  measurements performed by  Alice and Bob, along 
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with their subsequent classical communications. In this way our QuACS scheme 

establishes synchrony without having to transport timing information between 

Alice and Bob, in analogy to that feature of Ekert key distribution. In contradis- 

tinction, for the classical Einstein and SCT synchronization schemes, synchrony 

information must transmitted by  Alice to Bob over  some classical channel,  which 

limits the accuracy of the synchronization. Let us now see how our QuACS 

protocol works. 

Let us  first review how an atomic clock operates, in the language of quan- 

tum information theory. An atomic clock consists of an ensemble of identical two- 

level systems (qubits) whose temporal evolution rate is taken as  the time standard. 

For example, the second is defined as exactly 9,192,631,770 periods of oscillation 

corresponding to the hyperfine-transition (radio) frequency in the ground state of 

the Cs133 atom [5]. The  fact that  this frequency is identical for all Cs133 atoms, 

which are sufficiently  isolated  from the environment, allows anyone to establish a 

Cs133 time standard of comparable  accuracy. In general, any set of identical qubits 

may be used as the time standard  in  a temporal interferometer, which employs 

the Ramsey  method of separated oscillatory  fields [6]. 

Specifically,  let us suppose the qubit time standard  has energy eigenstates 

I 0) and I l), which  evolve as usual under the unitary transform U(t), namely [71, 
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where E,, and E, are the eigen-energies of I 0) and I 1) respectively, and 4 = 1/ A 

with A being  Dirac’s constant. To construct an atomic  qubit clock  via the Ramsey 

method [6], we apply a d 2  radio-wave pulse (Hadamard  transformation) to an  

ensemble of N identical qubits in state IO) at some time t = 0. This unitary one- 

qubit Hadamard  transform  generates an ensemble of equal-superposition states, 

10) + (IO) + I  l))/&, which then evolve unitarily  as, 

up to an unobservable overall phase factor. Here, Q = q(E0 - E l )  is  the frequency 

standard, which is known exactly since it defines the  unit of time. 

After a time t, we  now apply a second Hadamard  transform ( d 2  pulse) to 

the evolving ensemble of qubits. This transform again maps 10) + (IO) + I l))/&, as 

well as now 11) + (IO) - 11))/fi, to  yield a final clock  wave function, 

At this point, we perform a  final projective counting measurement of the qubit 

populations in either I 0) or I l), which  occur with probabilities Po or P, , given  by, 

P, = I ( O I I , V ( ~ ) ) ~ ~  = 3(1+ cosQt) and PI = I( lly(t))l = +(1- cosQt) , (4) 
2 
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where Po + P, = 1, from unitarity. Now by monitoring the oscillations of either P, 

or P, ,as  a function of time, we get an estimate of the clock phase Bt mod  2n that  is 

an equally good estimate of t, since the  standard B is known with infinite 

precision. 

Now that we have completed our review of the operation of an atomic clock, 

let us consider our proposed set up for quantum clock synchronization. First we 

would like to consider a  particular form of prior entanglement between pairs of 

qubits shared by Alice and Bob. Recall that our atomic clock qubits, like any two- 

level system, can be  modeled  by the SU(2) angular momentum algebra for spin-1/2 

particles. Focussing on a specific shared qubit pair in the ensemble held by Alice 

and Bob, let  us call their vector  spin-1/2 operators SA and S,, each operating on a 

2D Hilbert space & . The total spin  is S = S A  + S B ,  which operates on the 4D 

A A 

direct-product space &@& . A basis for this product  space is given by the 

eigenstates of the z components of S A  and S,, namely 1: IO), IO), , I O), I 1 > B  , I 1 > A  I O>B 

, I I), I l), }. Following the  rules for addition of angular momentum 171, we may 

construct the four simultaneous eigenstates of S z  and S 2  as, 
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where the subscripts (i,m} indicate the total and z-component angular  momen- 

tum eigenvalues, respectively.  The states with j = 0 and j = 1 are called the singlet 

and triplet states, respectively. Important for our argument  here is use of the 

entangled singlet state I I,v,,,), which spans  a spherically symmetric 1D subspace 

of SU(2)OSU(2), corresponding to zero  total angular momentum. This singlet 

state is a  “dark  state” that does  not  evolve in time, since its  unitary  temporal 

evolution  follows, 

which is equal to Iy,,,) up to an unobservable overall phase. (In general, for any 

one-qubit unitary transformation U, we have UOU I yo,,) = (det U) I yo,,).) Hence the 

pair of shared, “pre-clock” ensembles of entangled Bell states of this form  can be 

said to be “idling” as far as their overall temporal evolution is concerned. 

We imagine then that Alice and Bob share  a ensemble of a large number N 

of such entangled pairs, labeled in order as n = 1,2,3, ... N. (The qubits  could be 

arranged, say, in  an ion  or atom trap where each qubit’s  label is identified by its 

location in an  array.) Now to start the clocks at some time t = t i  = 0, Alice 

simultaneously measures all of her  pairs in the orthogonal basis {( IO>+ 1 1))/42, 

( I 0)- I 1))/42}.  Since in this basis the singlet state can be written, 
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each pair in the ensemble randomly collapses simultaneously at A and B into 

either 

IW') = k(lo)+ll))A $(lo)-l'))B Or I l v " )  = h ( l o ) - l l ) ) A  $(lo)+l'))B ' (8) 

with probability 1/2. Alice's measurement  has removed the singlet-state  invari- 

ance under temporal evolution, and thus the A and B clocks  begin to evolve in 

time as per  Eq.  (1)-both starting synchronously at time t = 0 in Alice and Bob's 

shared  inertial frame. The idling  clocks are now engaged, and they begin to run. 

Comparing the entangled-clock wavefunctions in Eq. (8) with the  ordinary 

clock formula in Eq. (2), we see that Alice's measurement effectively reproduces 

the  result of the first one-clock Hadamard  transform  in the Ramsey scheme. 

However, the resultant is now four distinct clocks:  two sub-ensembles of half of 

Alice's  collection of qubits each form separate clocks that  are n out of phase with 

each other, with a  similar situation for  Bob. In addition, each of Bob's sub- 

ensembles is running  in synchrony with one of Alice's,  but  they do not  yet  know 

which is which. 

The  next step in our QuACS  protocol is for  Alice and Bob to perform a 

Hadamard ( d 2  pulse) transform on their evolving qubit ensembles at times tA and 

t,, respectively.  The  evolving  wavefunctions in Eq. (8) then transform as, 
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If Bob  now carries out the usual projective counting measurement onto either  the 

IO) or I 1) states for his entire ensemble of qubits, he gets no timing information. 

For example, if he projects  onto the IO) ground state at some time t = ti > t i  = 0, 

then he will  get either P,’ = I(0 I I,Y;)~ = 3 [ 1 + cos Q(t, + ti)] or P’ = I(0 I I,Y;)~ = 

a[ 1- cosQ(t, + t i )] ,  randomly, with probability  1/2.  (The same holds for projection 

onto I 1)). Thus, his ensemble average will be a  flat, constant l/2 in time without 

the required clocking  oscillations.  For Ebb to extract a clock, a classical message 

2 2 

from Alice is now required. 

So let us suppose that Alice  now  post selects  from her  entire ensemble the 

sub-ensemble of, say, Type I qubits. Since the qubits are ordered, she can then tell 

Bob which subset of his ensemble are also of Type I by broadcasting their  ordinal 

labels via any form of classical communique. Bob is then able to extract, begin- 

ning at some time t = tg > tl = 0, his own  Type-I sub-ensemble, which is guaran- 

teed to be running exactly 7c out of phase with Alice’s.  The  couple’s  two  type I 

clocks are  thus anti-correlated, just  as in Ekert’s quantum key distribution 

scheme [4]. Now, by monitoring the temporal oscillations of his type I clock, Bob is 

assured by our protocol that his clock phase Qt, is related to Alice’s phase Q t A  , via 

Qb = (QtA-.n) mod  2n. From this information, Bob may prepare a  third  n-phase- 

shifted clock, using local classical synchronization, that  is  guaranteed to be in 

synchrony with Alice’s Type-I  clock, up to modulo 2.n. In other words, Alice and 

Bob  now have clocks that  are “ticking” in unison. 
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For some applications, such as satellite-based Very  Long  Base-Line 

Interferometry  (VBLI) [SI, the fact that Alice and Bob’s are phase locked  only up to 

modulo 27c is sufficient. However, there  are other applications, such as the 

synchronization of atomic  clocks in the Global  Positioning  System  (GPS) constella- 

tion [9], where it is important to have an absolute  reference  point  or  origin of time. 

For these applications, it  is  a simple matter to adapt our QuACS protocol to one 

that reveals a shared time origin. Let us suppose that, in addition to the standard 

clock qubits that  run  at  the defined frequency 51, we have an additional set of 

identical qubits all with a slightly shifted frequency Q’ , such that Q’ - S2 = AQ. For 

example, if S2 corresponds to the two-level  hyperfine  (qubit) transition of the 

standard Cs133 clock atom, then Q’ could correspond to the same transition  in  the 

long-lived  radioactive  isotope Cs135 , which is slightly different from Q due to the 

isotope shift [lo]. 

So now  Alice and Bob prepare two sets of two ensembles of entangled pairs 

in  the singlet state: one with frequency 52 and the other with Q’. As before,  Alice 

performs a simultaneous measurement on all the atoms in both of her ensembles 

using the orthogonal basis {( IO)+ I l))/dZ, ( IO)- I l))/dZ}. This starts the evolution of 

both types of clocks.  The  protocol is exactly the same as before, and therefore  Alice 

transmits information about the Type I and Type I’ sub-ensemble clocks to Bob via 

a classical channel. Bob is then able to extract two Type-I and Type-I’ clocks, 

running  at slightly  different rates, which are  in anti-synchrony with Alice’s 
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corresponding clocks. By monitoring the qubits in, say, the IO)  state of his two 

clocks, Bob observes the following  two  evolution  probabilities, P, = 

+ [ 1+ cosQ(t, + ti)] and Pi = +[ 1+ cosQ’(t, + ti)]. Bob  now may subtract these two 

signals to get a difference  function, 

f ( t ,  ) = sin[ + AQ( t, + ti)] sin[+ (Q + a’)( t, + ti)] , (10) 

whose first  term  is  a slowly varying beat  envelope that oscillates at frequency ASZ, 

and whose  second term oscillates rapidly at the average of the two clock frequen- 

cies, (Q + Q’)/2. From the beat  envelope function, e(t,) = sin[+AQ(t, +ti)], Bob can 

determine an origin of time in coincidence with Alice’s, if they  both arrange  in 

advance that the complete set of classical communiqu6s takes place in  a time 

short enough such that + AQti < x .  Bob can then be sure  that  the slowly varying 

beat  envelope is  still in its  first half-cycle of oscillation, which  allows him to 

evaluate the measured function e( tB)  at t, = 0 and invert it within a single branch 

of the arcsine function to get ti = 2arcsin[e(O,)]/ AQ, uniquely. Bob  now knows 

that  the origin of his time axis, which is entirely conventional, must be translated 

backwards in time by an amount ti, so that his origin of time corresponds with 

Alice’s.  Alice and Bob  now have exact synchrony in  their spatially separated 

clocks,  which are  at  rest in  their common inertial frame. 
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